Jangan malas baca, ya Telusuri!

Latihan Soal SBMPTN Bab: Eksponen Dan Bentuk Akar Lengkap Dengan Pembahasan

Buat kamu yang pingin melatih pemahaman kamu mengenai Bab: Eksponen dan Bentuk Akar, yuk kunjungi!

Soal UTBK Eksponen Dan Bentuk Akar SMA/SMK

01


Jika $\sqrt[3]{4^{x+1}}=2\sqrt{8^{x}}$, maka $x=...$

A. $-\frac{2}{5}$
B. $-\frac{1}{5}$
C. $\frac{1}{5}$
D. $\frac{2}{5}$
D. $1$
Pembahasan:
Show

\begin{aligned} \sqrt[3]{4^{x+1}} &= 2\sqrt{8^{x}} \\ \sqrt[3]{2^{x+1}} &= 2\sqrt{2^{3x}} \\ 2^{\frac{2x+2}{3}}&= 2(2^{\frac{3}{2}x}) \\ 2^{\frac{2x+2}{3}}&= 2^{1+\frac{3}{2}x} \\ \frac{2x+2}{3} &= 1+\frac{3}{2}x \\ 4x+4 &= 6+9x \\ 5x &= -1\\ x&=-\frac{1}{5} \end{aligned}

JAWAB : B

02


Jika $4^{x}-4^{x-1}=6$, maka $(2x)^{x}$ sama dengan

A. $3$
B. $3\sqrt{3}$
C. $9$
D. $9\sqrt{3}$
D. $27$
Pembahasan:
Show

\begin{aligned} 4^{x}-4^{x-1} &= 6 &\rightarrow 4^{x}-\frac{4^{x}}{4}&=6 \\ 3\times 4^{x} &= 24 &\rightarrow 4^{x}&=8 \\ 2^{2x}&= 2^{3} &\rightarrow x&=\frac{3}{2} \\ \end{aligned} jadi, $(2x)^{x} = (3)^{\frac{3}{2}}=3\times 3^{\frac{1}{2}}=3\sqrt{3}$

JAWAB : B

03


Nilai $x$ yang memenuhi persamaan $\sqrt[3]{4^{5-x}}=\frac{1}{2^{2x-1}}$ adalah...

A. $-4$
B. $-1$
C. $-\frac{1}{2}$
D. $\frac{1}{4}$
D. $2$
Pembahasan:
Show

\begin{aligned} \frac{\sqrt[3]{4^{5-x}}}{8} &= \frac{1}{2x+1}\Leftrightarrow \frac{2^{\frac{10-2x}{3}}}{2^{3}} = 2^{-2x-1} \\ 2^{\frac{10-2x}{3}-3} &= 2^{-2x-1} \\ \frac{10-2x}{3} - 3&= -2x-1 \\ 10-2x-9 &=-6-3 \\ 4x &= -4\Leftrightarrow x=-1 \end{aligned}

JAWAB : B

04


Jika $\frac{\frac{1}{2}-\frac{1}{\sqrt{5}}}{\frac{1}{2}+\frac{1}{\sqrt{5}}} = a+b\sqrt{5}$

Maka $a+b$

A. $-4$
B. $5$
C. $-\frac{1}{2}$
D. $\frac{1}{4}$
D. $2$
Pembahasan:
Show

$a+b\sqrt{5}=\frac{\frac{1}{2}-\frac{1}{5}}{\frac{1}{2}+\frac{1}{\sqrt{5}}}=\frac{\frac{\sqrt{5}-2}{2\sqrt{5}}}{\frac{\sqrt{5}+2}{2\sqrt{5}}}=\frac{\sqrt{5}-2}{5-4}$

Rasionalkan penyebutnya

\begin{flalign} a+b\sqrt{5}&= \frac{\sqrt{5}-2}{\sqrt{5}-2}\times \frac{\sqrt{5}-2}{\sqrt{5}-2}=\frac{9-4\sqrt{5}}{5-4} &\\ a+b\sqrt{5}&= 9-4\sqrt{5} &\\ \end{flalign} \begin{flalign} \text {Jadi nilai a = 9 dan b = -4,} &\\ \text {Sehingga a+b = 9+(-4) = 5} &\\ \end{flalign} JAWAB : B

05


Bentuk akar $\frac{(a^{\frac{5}{3}}b^{\frac{1}{2}}-a^{\frac{2}{2}}b^{\frac{3}{2}})}{(a^{\frac{7}{2}}b^{\frac{1}{2}}-a^{\frac{3}{2}}b)}$

Maka $a+b$

A. $\sqrt{a}-\sqrt{b}$
B. $\sqrt{a}+\sqrt{b}$
C. $\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}$
D. $\frac{\sqrt{a}-\sqrt{b}}{a-b}$
E. $\frac{\sqrt{a}+\sqrt{b}}{a+b}$
Pembahasan:
Show

\begin{aligned} \frac{(a^{\frac{5}{3}}b^{\frac{1}{2}}-a^{\frac{2}{2}}b^{\frac{3}{2}})}{(a^{\frac{7}{2}}b^{\frac{1}{2}}-a^{\frac{3}{2}}b)}= \frac{b^{\frac{1}{2}}a^{\frac{2}{3}}\\(a-b)}{ a^{\frac{2}{3}}b^{\frac{1}{2}}\\(\sqrt{a}+\sqrt{b})} \\ = \frac{(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}{ (\sqrt{a}-\sqrt{b})} = \sqrt{a}+\sqrt{b} \end{aligned}

JAWAB : B

06


Jika $r = \frac{20\sqrt{2} - 25}{(10+20\sqrt{2})(2-\sqrt{2})}$, maka $(4r-2)^2 = ....$

A. $5$
B. $4$
C. $3$
D. $2$
E. $1$
Pembahasan:
Show

\begin{flalign} r & = \frac{20\sqrt{2} - 25}{(10+20\sqrt{2})(2-\sqrt{2})} \\ & = \frac{5(4\sqrt{2} - 5)}{10(1+2\sqrt{2})(2-\sqrt{2})} \, \, \, \, \, \, \, \text{(bagi 5)} &\\ & = \frac{(4\sqrt{2} - 5)}{2(1+2\sqrt{2})(2-\sqrt{2})} \, \, \, \, \, \, \, \text{(kalikan penyebutnya)} &\\ & = \frac{(4\sqrt{2} - 5)}{2(3\sqrt{2} - 2)} \, \, \, \, \, \, \, \text{(kalikan sekawan)} &\\ & = \frac{(4\sqrt{2} - 5)}{2(3\sqrt{2} - 2)} . \frac{3\sqrt{2} + 2}{3\sqrt{2} + 2} &\\ & = \frac{14 - 7\sqrt{2}}{2(9.2- 4 )} = \frac{7(2 - \sqrt{2})}{2.14} = \frac{(2 - \sqrt{2})}{4} \end{flalign}

Menentukan nilai $(4r-2)^2$

\begin{flalign} (4r-2)^2 & = \left( 4.\frac{(2 - \sqrt{2})}{4} - 2 \right)^2 &\\ & = \left( (2 - \sqrt{2}) - 2 \right)^2 &\\ & = \left( - \sqrt{2} \right)^2 &\\ & = 2 \end{flalign} JAWAB : D

07


Bentuk sederhana dari $\dfrac{\left(\sqrt{3}+\sqrt{7} \right)\left( \sqrt{3}-\sqrt{7} \right)}{2\sqrt{5}-4\sqrt{2}}$ adalah...

A. $\frac{2}{3} \left(\sqrt{5}+2\sqrt{2} \right)$
B. $\frac{2}{3} \left(2\sqrt{2}-\sqrt{5} \right)$
C. $-\frac{2}{3} \left( 2\sqrt{5}+ 4\sqrt{2} \right)$
D. $-\frac{4}{9} \left( 2\sqrt{5}+ 4\sqrt{2} \right)$
E. $-\frac{4}{9} \left( 2\sqrt{5}-\sqrt{2} \right)$
Pembahasan:
Show \begin{flalign} & \dfrac{\left(\sqrt{3}+\sqrt{7} \right)\left( \sqrt{3}-\sqrt{7} \right)}{2\sqrt{5}-4\sqrt{2}} &\\ & = \dfrac{3-7}{2 \left( \sqrt{5}-2\sqrt{2} \right) } \times \dfrac{\sqrt{5}+2\sqrt{2}}{\sqrt{5}+2\sqrt{2}} &\\ & = \dfrac{-4 \left( \sqrt{5} + 2\sqrt{2} \right)}{2 \left( 5- 8 \right) } &\\ & = \dfrac{-4 \left( \sqrt{5} + 2\sqrt{2} \right)}{-6} \\ & = \dfrac{2}{3} \left( \sqrt{5} + 2\sqrt{2} \right) &\\ \end{flalign} JAWAB : A

08


$\dfrac{5 \left( \sqrt{3}+\sqrt{2} \right)\left( \sqrt{3}-\sqrt{2} \right)^{3}}{\left( 2\sqrt{2}-\sqrt{3} \right)}=\cdots$

A. $\sqrt{3}-\sqrt{2}$
B. $3\sqrt{3}-2\sqrt{2}$
C. $2\sqrt{2}-3\sqrt{3}$
D. $3\sqrt{2}-2\sqrt{3}$
E. $4\sqrt{2}-3\sqrt{3} $
Pembahasan:
Show \begin{flalign} & \dfrac{5 \left( \sqrt{3}+\sqrt{2} \right)\left( \sqrt{3}-\sqrt{2} \right)^{3}}{\left( 2\sqrt{2}-\sqrt{3} \right)} &\\ & = \dfrac{5 \left( \sqrt{3}+\sqrt{2} \right)\left( \sqrt{3}-\sqrt{2} \right)\left( \sqrt{3}-\sqrt{2} \right)^{2}}{\left( 2\sqrt{2}-\sqrt{3} \right)} &\\ & = \dfrac{5 \left( 3-2 \right)\left( \sqrt{3}-\sqrt{2} \right)^{2}}{\left( 2\sqrt{2}-\sqrt{3} \right)} &\\ & = \dfrac{5 \left( 3+2-2\sqrt{6} \right)}{\left( 2\sqrt{2}-\sqrt{3} \right)} &\\ & = \dfrac{25-10\sqrt{6}}{\left( 2\sqrt{2}-\sqrt{3} \right)} \times \dfrac{\left( 2\sqrt{2}+\sqrt{3} \right)}{\left( 2\sqrt{2}+\sqrt{3} \right)} &\\ & = \dfrac{50\sqrt{2}+25\sqrt{3}-20\sqrt{12}-10\sqrt{18}}{\left( 8-3 \right)} &\\ & = \dfrac{50\sqrt{2}+25\sqrt{3}-40\sqrt{3}-30\sqrt{2}}{5} &\\ & = \dfrac{20\sqrt{2}-15\sqrt{3}}{5} &\\ & = 4\sqrt{2}-3\sqrt{3} \end{flalign} JAWAB : E

09


Nilai x yang memenuhi persamaan $3^{2x+3}=\sqrt[3]{27^{x+5}}$

A. $-2$
B. $-1$
C. $0$
D. $1$
E. $2$
Pembahasan:
Show \begin{flalign} 3^{2x+3} &=\sqrt[3]{27^{x+5}} &\\ 3^{2x+3} &=27^{\dfrac{x+5}{3}} &\\ 3^{2x+3} &=(3^{3})^{\dfrac{x+5}{3}} &\\ 3^{2x+3} &=3^{x+5} &\\ & \Rightarrow 2x+3=x+5 &\\ & \Rightarrow 2x-x=5-3 &\\ & \Rightarrow x=2 \end{flalign} JAWAB : E

10


Nilai $1-x$ yang memenuhi persamaan $\sqrt{8^{3-x}}=4 \cdot 2^{1-2x}$

A. $-4$
B. $-3$
C. $-2$
D. $3$
E. $4$
Pembahasan:
Show \begin{flalign} \sqrt{8^{3-x}} &= 4 \cdot 2^{1-2x} &\\ 8^{\dfrac{3-x}{2}} &= 2^{2} \cdot 2^{1-2x} &\\ 2^{ \dfrac{3(3-x)}{2}} &= 3-2x &\\ 9-3x &= 6-4x &\\ 4x-3x &= 6-9 &\\ x &= -3 &\\ 1- x &= 1-(-3) =4 \end{flalign} JAWAB : E

About the Author

Haus akan ilmu

2 comments

  1. ka ka ka gege sekali
    1. Woh ya dungs, siapa dulu adminnya 😌☝️
Nambah ilmu setelah membaca? Yuk, tulis komentar mu!
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.